- 2-V to 6-V $V_{C C}$ Operation
- High-Current 3-State Parallel Register Outputs Can Drive Up To 15 LSTTL Loads
- Low Power Consumption, 80- $\mu \mathrm{A}$ Max Icc
- Typical $\mathrm{t}_{\mathrm{pd}}=14 \mathrm{~ns}$

SN54HC590A... J OR W PACKAGE
SN74HC590A... D, DW, OR N PACKAGE (TOP VIEW)

- $\pm 6-\mathrm{mA}$ Output Drive at 5 V
- Low Input Current of $1 \mu \mathrm{~A}$ Max
- 8-Bit Counter With Register
- Counter Has Direct Clear

NC - No internal connection

description/ordering information

The 'HC590A devices contain an 8-bit binary counter that feeds an 8-bit storage register. The storage register has parallel outputs. Separate clocks are provided for both the binary counter and storage register. The binary counter features direct clear ($\overline{\mathrm{CCLR}}$) and count-enable ($\overline{\mathrm{CCKEN}}$) inputs. A ripple-carry output (RCO) is provided for cascading. Expansion is accomplished easily for two stages by connecting RCO of the first stage to $\overline{\text { CCKEN }}$ of the second stage. Cascading for larger count chains can be accomplished by connecting RCO of each stage to the counter clock (CCLK) input of the following stage.
CCLK and the register clock (RCLK) inputs are positive-edge triggered. If both clocks are connected together, the counter state always is one count ahead of the register. Internal circuitry prevents clocking from the clock enable.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP - N	Tube of 25	SN74HC590AN	SN74HC590AN
	SOIC - D	Tube of 40	SN74HC590AD	HC590A
		Reel of 2500	SN74HC590ADR	
		Reel of 250	SN74HC590ADT	
	SOIC - DW	Tube of 40	SN74HC590ADW	HC590A
		Reel of 2000	SN74HC590ADWR	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube of 25	SNJ54HC590AJ	SNJ54HC590AJ
	CFP - W	Tube of 150	SNJ54HC590AW	SNJ54HC590AW
	LCCC - FK	Tube of 55	SNJ54HC590AFK	SNJ54HC590AFK

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

timing diagram

TIMING SEQUENCE

1. Clear Counter (asynchronous).
2. Count up: 0×01. Store 0×00 in register.
3. Inhibit counter clock ($\overline{\mathrm{CCKEN}}=\mathrm{HIGH})$. Store 0×01 in register.
4. Count $0 \times 02,0 \times 03$.
5. 3-state the outputs
6. Count up: 0×04
7. Enable outputs.
8. Continue up: 0×05
9. Store 0×05 in register.
10. Continue counting: $0 x 06 \ldots 0 x F D, 0 x F E, 0 x F F, 0 x 00$, etc.
11. Store 0×00 in register.
logic diagram (positive logic)

Pin numbers shown are for the D, DW, J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text {. } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V}
$$

Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right.$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}$) (see Note 1) .. $\pm 20 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$) (see Note 1) 20 mA

Continuous current through V_{CC} or GND .. $\pm 70 \mathrm{~mA}$
Package thermal impedance, θ_{JA} (see Note 2): D package . $73^{\circ} \mathrm{C} / \mathrm{W}$
DW package $57^{\circ} \mathrm{C} / \mathrm{W}$
N package .. $67^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

			SN54HC590A			SN74HC590A			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		2	5	6	2	5	6	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			1.5			
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			4.2			
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			0.5			0.5	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35			1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			1.8			1.8	
V_{1}	Input voltage		0		V_{CC}	0		V_{CC}	V
V_{O}	Output voltage		0		V_{CC}	0		V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000			1000	
$\mathrm{t}_{\mathrm{t}} \ddagger$	Input transition (rise and fall) time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500			500	ns
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400			400	
T_{A}	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

\ddagger If this device is used in the threshold region (from $\mathrm{V}_{I \mathrm{~L}} \max =0.5 \mathrm{~V}$ to $\mathrm{V}_{\text {IH }} \min =1.5 \mathrm{~V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_{t}=1000 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ does not damage the device; however, functionally, the CCLK and RCLK inputs are not ensured while in the shift, count, or toggle operating modes.
NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC590A		SN74HC590A		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l} \mathrm{OH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\overline{\mathrm{RCO}}, \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}, \mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$		3.98	4.3		3.7		3.84			
		$\overline{\mathrm{RCO}}, \mathrm{I} \mathrm{OH}=-5.2 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}, \mathrm{IOH}=-7.8 \mathrm{~mA}$		5.48	5.8		5.2		5.34			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l} \mathrm{OL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		RCO, $\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}, \mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$			0.17	0.26		0.4		0.33		
		$\overline{\mathrm{RCO}}, \mathrm{I} \mathrm{OL}=5.2 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
		$\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{H}}, \mathrm{l} \mathrm{IL}=7.8 \mathrm{~mA}$			0.15	0.26		0.4		0.33		
I	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
IOZ	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.01	± 0.5		± 10		± 5	$\mu \mathrm{A}$	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0 ,	$\mathrm{O}=0$	6 V			8		160		80	$\mu \mathrm{A}$	
C_{i}			$\begin{gathered} 2 \mathrm{~V} \\ \text { to } 6 \mathrm{~V} \end{gathered}$		3	10		10		10	pF	

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SN54HC590A	SN74HC590A	UNIT	
			MIN MAX	MIN MAX	MIN MAX			
${ }^{\text {f }}$ lock	Clock frequency			2 V	4	2.5	3.2	MHz
			4.5 V	20	13	16		
			6 V	24	16	19		
t_{w}	Pulse duration	CCLK or RCLK high or low	2 V	125	200	155	ns	
			4.5 V	25	38	31		
			6 V	21	32	26		
		$\overline{\text { CCLR }}$ low	2 V	100	150	125		
			4.5 V	20	30	25		
			6 V	17	26	21		
$\mathrm{t}_{\text {su }}$	Setup time	$\overline{\text { CCKEN }}$ low before CCLK \uparrow	2 V	100	150	125	ns	
			4.5 V	20	30	25		
			6 V	17	26	21		
		$\overline{\text { CCLR }}$ high (inactive) before CCLK \uparrow	2 V	100	150	125		
			4.5 V	20	30	25		
			6 V	17	26	21		
		CCLK \uparrow before RCLK $\uparrow \uparrow$	2 V	100	150	125		
			4.5 V	20	30	25		
			6 V	17	26	21		
th	Hold time	$\overline{\text { CCKEN }}$ low after CCLK \uparrow	2 V	50	75	60	ns	
			4.5 V	10	15	12		
			6 V	9	13	11		

\dagger This setup time ensures that the register gets stable data from the counter outputs. The clocks may be tied together, in which case the register is one clock pulse behind the counter.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

* This parameter is not production tested for the SN54HC590A.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{cc}	SN74HC590A			UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		MIN MAX	
				MIN TYP	MAX		
$f_{\text {max }}$			2 V	48		3.2	MHz
			4.5 V	2035		16	
			6 V	2440		19	
$t_{\text {pd }}$	CCLK \uparrow	$\overline{\mathrm{RCO}}$	2 V	80	150	190	ns
			4.5 V	20	30	38	
			6 V	15	26	33	
tPLH	$\overline{\text { CCLR }} \downarrow$	$\overline{\mathrm{RCO}}$	2 V	70	130	165	ns
			4.5 V	18	26	33	
			6 V	14	22	28	
$t_{\text {pd }}$	RCLK \uparrow	Q	2 V	70	140	175	ns
			4.5 V	18	28	35	
			6 V	14	24	30	
ten	$\overline{\mathrm{OE}} \downarrow$	Q	2 V	80	125	155	ns
			4.5 V	20	25	31	
			6 V	15	21	26	
$t_{\text {dis }}$	$\overline{\mathrm{OE}} \uparrow$	Q	2 V	80	125	155	ns
			4.5 V	20	25	31	
			6 V	15	21	26	
t_{t}		$\overline{\text { RCO }}$	2 V	38	75	95	ns
			4.5 V	8	15	19	
			6 V	6	13	16	
		Q	2 V	38	60	75	
			4.5 V	8	12	15	
			6 V	6	10	13	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Vcc	SN54HC590A					UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	
				MIN	TYP	MAX			
${ }^{\text {tpd }}$	RCLK \uparrow	Q	2 V		100	300		447	ns
			4.5 V		24	60		90	
			6 V		20	51		77	
$t_{\text {en }}$	$\overline{O E}$	Q	2 V		90	200		300	ns
			4.5 V		23	40		60	
			6 V		19	34		51	
$t_{t}{ }^{*}$		Q	2 V		45	210		315	ns
			4.5 V		17	42		63	
			6 V		13	36		53	

* This parameter is not production tested for the SN54HC590A.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	Vcc	SN74HC590A					UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	
				MIN	TYP	MAX			
${ }^{\text {tpd }}$	RCLK \uparrow	Q	2 V		100	300		380	ns
			4.5 V		24	60		76	
			6 V		20	51		65	
ten	$\overline{\mathrm{OE}}$	Q	2 V		90	200		250	ns
			4.5 V		23	40		50	
			6 V		19	34		43	
t_{t}		Q	2 V		45	210		265	ns
			4.5 V		17	42		53	
			6 V		13	36		45	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd} Power dissipation capacitance	No load	250	pF

PARAMETER MEASUREMENT INFORMATION

PARAMETER		RL	C_{L}	S1	S2
ten	tPZH	$1 \mathrm{k} \Omega$	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Closed
	tPZL			Closed	Open
${ }^{\text {dis }}$	tPHZ	$1 \mathrm{k} \Omega$	50 pF	Open	Closed
	tpLZ			Closed	Open
${ }_{t p d}$ or t_{t}		--	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Open

VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES

NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as ten.
G. $\quad \mathrm{tPLH}$ and $\mathrm{t}_{\mathrm{PHL}}$ are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { e Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-89603012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
5962-8960301EA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
5962-8960301FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
SN54HC590AJ	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SN74HC590AD	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADRE4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADRG4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADT	ACTIVE	SOIC	D	16	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADTE4	ACTIVE	SOIC	D	16	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADTG4	ACTIVE	SOIC	D	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADW	ACTIVE	SOIC	DW	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADWG4	ACTIVE	SOIC	DW	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADWR	ACTIVE	SOIC	DW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590ADWRG4	ACTIVE	SOIC	DW	16	2000	$\begin{aligned} & \text { Green (RoHS \& } \\ & \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{aligned}$	CU NIPDAU	Level-1-260C-UNLIM
SN74HC590AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74HC590AN3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74HC590ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SNJ54HC590AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
SNJ54HC590AJ	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N/A for Pkg Type
SNJ54HC590AW	ACTIVE	CFP	W	16	1	TBD	A42	N/ A for Pkg Type

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^0]$\mathrm{Pb}-\mathrm{Free}$ (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 (mm)	B0 (mm)	K0 (mm)	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74HC590ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC590ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC590ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74HC590ADWR	SOIC	DW	16	2000	346.0	346.0	33.0

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

D (R-PDSO-G16)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AC.

D(R-PDSO-G16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Refer to IPC7351 for alternate board design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AA.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The Pb-Free/Green conversion plan has not been defined.

